Browse Source

wk12

master
alistair 3 years ago
parent
commit
a588f2f225
  1. 518
      notes.tex

518
notes.tex

@ -2627,6 +2627,8 @@ if you have $\tau_0 = 0$ (the Kelvin-Voigt model of a viscoelastic solid) $\delt @@ -2627,6 +2627,8 @@ if you have $\tau_0 = 0$ (the Kelvin-Voigt model of a viscoelastic solid) $\delt
\pagebreak
\chapter{Continuum Mechanics in 3D}
\section{Navier-Stokes Derivation}
\begin{description}
\item[Material Coordinates] (lagrangian)
@ -2674,7 +2676,7 @@ At $t = 0$, $X(A, t= 0) = A \implies F = \mathbb I \implies J = 1$ @@ -2674,7 +2676,7 @@ At $t = 0$, $X(A, t= 0) = A \implies F = \mathbb I \implies J = 1$
Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$
\week{}
\lecture
\lecture{}
\begin{ex} Uniform dilatation
@ -3050,8 +3052,6 @@ Gives $\vec t = T^T \vec n$ where $T$ is the \emph{Cauchy stress tensor} @@ -3050,8 +3052,6 @@ Gives $\vec t = T^T \vec n$ where $T$ is the \emph{Cauchy stress tensor}
\lecture {}
The left hand side of $( * * ) $ can be written as
$$\varrho D_t \vec v + \vec v \cdot D_t \varrho + \vec v \varrho(\nabla \cdot
@ -3119,6 +3119,7 @@ So the full system we have so far is @@ -3119,6 +3119,7 @@ So the full system we have so far is
What is missing is the constitutive relation for $T$
\lecture{}
\subsection{Material frame indifference}
Any constitutive law should not depend on translation or rotation: any rigid body motion.
@ -3134,9 +3135,520 @@ smooth functions, and $Q$ is a rotation matrix. $Q Q^T = \mathbb I \forall t > @@ -3134,9 +3135,520 @@ smooth functions, and $Q$ is a rotation matrix. $Q Q^T = \mathbb I \forall t >
other coordinate frame. You should be able to compute the stress tensor
in either and get the same result.
\item Form invariance: any constitutive law $T = G(T) $ stress tensor in
terms of another quantity $R$ should be the same in the transformed
coordinate frame.
\end{enumerate}
These conditions give:
$$G(R^*) = T^* = Q G(R) Q^T \qquad\text{For all } R \text{ and } T$$
\begin{ex}
$X^* = QX + b(t) \quad |_{\p t}$
$V^* - Q'(t) X + QV + b'(t) $ this is how the velocity field transforms.
And a constitutive law such as $T = G(v)$ now in spatial coordinates. (We are
using $R = \vec v$ and $R^* = \vec v^*$).
MFI in this case is
$$Q G(v) Q^T = G(Q'(t) x + Q v + b'(t))$$
For all rotations $Q(t)$ and shifts $b(t)$, but even if $Q = \mathbb I$
$C(v) = G(v + b'(t))$ is only true if $b'(t) = 0$ ie $b$ is constant.
\end{ex}
\begin{ex}
$T = \mu (\nabla v + (\nabla v)^T) $ ie $R = \nabla v + \nabla v ^T$ is
materially frame indifferent.
\end{ex}
\begin{thm}{}{} Rivilin Ericson Theorem
Assuming that $T$ and $R$ are symmetric and objective and $T = G(R)$ is form
invariant, then it can be written as
$$T = \alpha_0 \mathbb I + \alpha_1 R + \alpha_2 R^2$$
Where $\alpha_0, \alpha_1,\alpha_2 \in \R$ are functions of
$I_R = tr(R) =
\lambda_1 + \lambda_2 + \lambda_3$
$II_R = \frac 12(tr(R)^2 - tr(R^2)) = \lambda_1 \lambda_2 + \lambda_1
\lambda_3 + \lambda_2 \lambda_3$
$III_R = \det(R) = \lambda_1 \lambda_2 \lambda_3$
Which are the principle invariants of $R$, ie, they are conserved under
rotations and $\lambda_1 , \lambda_2 \lambda_3$ are eigenvalues of $R$.
How to show this:
Either constrctive by picking a range of potential rotations, or assuming
that $G$ has a (taylor) expansion $G(R) = \sum_{n = 0}^\infty \kappa_n R^n$
with constants $\kappa_n$, and using the Cayley-Hamilton theorem:
$R \in \R^{3\times 3} $ satisfies its characteristic equation: $\det(R - X
\mathbb I) = 0 \implies R^3 I_R R^2 - II_R + III_R \mathbb I$.
$... = \alpha_{2,n} R^2 + \alpha_{1,n} R + \alpha_{0,n} \mathbb I$.
\end{thm}
\week{}
\lecture{}
\subsection{Newtonian Fluids}
The stress depends linearly on the strain rate. (In 1D strain rate was $\p_t
\varepsilon$). In 3D strain rate is pressure.
\begin{itemize}
\item Pressure is modelled by $T = -p \mathbb I$. Acting through an
arbitrary plane with unit normal $\vec n$, it is given by $-p \vec n$.
Pressure is isotripic.
\item Viscous stress. In 1D this was $\varepsilon_t = \p_t (U_A) = V_A$
to model relative velocity differences between neighbouring particles.
In 3D spatial coordinates an analog would be $\p_x v, \p_y v, \p_z v$ ie
$\nabla \vec v$.
Decompose this into its symmetric and anti-symmetric component: $\nabla
\vec v = D + W $ where:
$D$ is the rate of deformation tensor defined as:
$$
\begin{aligned}
{D} & \equiv \frac{1}{2}\left(\nabla \vec{v}+\nabla \vec{v}^{T}\right) \\
&=\left(\begin{array}{ccc}
\frac{\partial v_{1}}{\partial x} & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial y}+\frac{\partial v_{2}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial z}+\frac{\partial v_{3}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial v_{1}}{\partial y}+\frac{\partial v_{2}}{\partial x}\right) & \frac{\partial v_{2}}{\partial y} & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial z}+\frac{\partial v_{3}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial v_{1}}{\partial z}+\frac{\partial v_{3}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial z}+\frac{\partial v_{3}}{\partial y}\right) & \frac{\partial v_{3}}{\partial z}
\end{array}\right)
\end{aligned}
$$
And $W$ is the vorticity or spin tensor:
$$
\begin{aligned}
{W} & \equiv \frac{1}{2}\left(\nabla \vec{v}-\nabla \vec{v}^{T}\right) \\
&=\left(\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial y}-\frac{\partial v_{2}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial z}-\frac{\partial v_{3}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right) & 0 & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial z}-\frac{\partial v_{3}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x}-\frac{\partial v_{1}}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}\right) & 0
\end{array}\right)
\end{aligned}
$$
\end{itemize}
This suggests a constitutive law of the form:
$$T = -p \mathbb I + G(D,w) \qquad(*)$$
However under rigid body motion $X^* = Q(t) X + b(t)$ and $D$ and $w$ transform
according to $D^* = QDQ^T$ $w^* = QwQ^T +
\underbrace{Q'Q^T}_{\text{an antisimmetric
matrix}}$
$(*)$ is MFI: $QG(R)Q^T = G(R^*)$ if
$$QG(D,w) Q^T = G(D^*, w^*) = G(Q D Q^T, QwQ^T, + Q'Q^T)\quad \forall Q(t)$$
But if $Q = \mathbb I$ and $Q' = M$ (anti-symmetric),
$$G(D,w) = G(D, w + M)$$
Which is only true if $M = \hat 0 \in \R^{3 \times 3}$ is the zero matrix.
$\implies T = -p \mathbb I + G(D)$.
The rivilin-erickson theorem now tells us that
$$G(D) = \alpha_0 \mathbb I + \alpha_q D + \alpha_2 D^2$$
And $\alpha_0 = 0$ if $D = \mathbf 0$, there is no viscous stress if $D = \mathbf 0$.
Finally, since linearity characterises newtonian fluids, we simplify the model
by assuming linear dependence of $T$ on $D$.
$\implies \alpha_2 = 0$ because $D^2$ is not linear.
$\alpha_1 = 2\mu$, a constant, since $D$ is linear.
$\alpha_0 = \lambda I_D = \lambda tr(D) = \lambda \nabla \cdot \vec v$ since
$I_d$ is the only principle invariant that is linear.
\begin{itemize}
\item [$\mu$] Dynamic shear velocity
\item [$p$] pressure
\item [$\lambda$] bulk viscosity
\end{itemize}
$\implies \nabla \cdot T = - \nabla p + \lambda \nabla (\nabla \cdot \vec v )
+ \mu(\Delta \vec v + \nabla (\nabla \cdot \vec v))$
And substitute into the momentum equation to obtain the Navier-Stokes equation.
$$\varrho D_t \vec v = -\nabla p (\lamba + \mu) \nabla (\nabla \cdot \vec v) +
\mu \Delta \vec v + \varrho \vec f$$
Typically couple to the continuity equation:
$$D_t \varrho + \varrho \nabla \cdot \vec v = 0$$
Ideal gas law (with known temperature $T$):
$$p = \varrho R T$$
Usually this system is solved numerically, for example using OpenFoam software
package.
\lecture{}
A common simplification is to assume incompressibility: $\p_t \varrho = 0 =
\p_{\vec x_i } \varrho \implies \p_t \varrho + \Nabla \cdot (\varrho \vec v) = 0$
$\implies \nabvla \cot \vec v = 0$
The stress in this case is $T = -p \I + 2\mu D$ and we obtain the incompressible
navier-stokes equation:
$$\varrho D_t \vec v = - \nabla p + \mu \Delta \vec v + \varrho \vec f$$
Coupled to : $\nabvla \cdot \vec v = 0$
And treat $p$ as lagrangian multiplier to enforce $\nabla\cdot \vec v = 0 $
Then for an incompressible newtonian fluid in cartesian coordinates, letting
$\vec v = (u,v,w)$ and $\vec f = (f,g,h)$:
\begin{gathered}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+\rho f \\
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)+\rho g \\
\rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)+\rho h \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{gathered}
Note: $D_t \vec v = \p_t \vec v + (\vec v \cdot \nabla) \vec v = \p_t
\vec v + (\nabla\vec v) \vec v $
$\Delta \vec v = \begin{pmatrix} \Delta u\\ \Delta v \\ \Delta w \end{pmatrix} $
\subsubsection{Remarks}
\begin{itemize}
\item
Proving global existance in time for the incompressible navier stokes
equation is one of the millenium problems.
\item
This model is the basis for
simulations of fluids on all spatial scales: galaxies, earths mantle, oceans,
hydraulics, in biology; blood flow, tissue, cytoplasm, etc.
\item
$\mu$ is the shear viscosity:
\begin{center}
\begin{array}{l|l|l}
\hline \text { Fluid } & \text { Viscosity (Pa-s) } & \text { Density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
\hline \text { Air } & 1.8 \times 10^{-5} & 1.18 \\
\hline \text { Water } & 8.9 \times 10^{-4} & 0.997 \times 10^{3} \\
\hline \text { Mercury } & 1.5 \times 10^{-3} & 1.3 \times 10^{4} \\
\hline \text { Olive oil } & 0.08 & 0.92 \times 10^{3} \\
\hline \text { Honey } & 37 & 1.4 \times 10^{3} \\
\hline \text { Pitch } & 2.3\times 10^8& \\
\hline
\end{array}
\end{center}
\end{itemize}
\section{Solutions to steady flow problems}
Steady flow is characterised by $\p_t \vec v = 0$, and $\p_t p = 0$ and $\p_t
\varrho = 0$.
This implies that $D_t \vec v = \p_t \vec v + (\vec v \cdot \nabla) \vec v$
So we now the Newtonian Navier--Stokes becomes:
$$\begin{cases} \varrho(\vec v \cdot \nabla) \vec v = - \nabla p + \mu \Delta
\vec v + \varrho \vec f \\ \nabla \vec v = 0\end{cases}$$
Note that $\vec v, p \varrho $ do not change with time but single particles
still move, and their trajectories must satisfy in general:
$$\begin{cases}\frac {d X} {dt} = V(A,t) = v(X(A,t), t)\\ X(A,t=0) = A
\end{cases}$$
So in steady flow:
$$\begin{cases} \frac {dX} {dt} = V(A) = v(X(A,t)) \\ X(A,t=0) = A\end{cases}$$
The trajectory lines do not change with time.
\subsection{Coette plane flow}
Steady flow of fluid between two parallel planes.
\incfigw{coette}{0.6}
Lower plate is stationary, upper plate has speed in x direction of $u_0$.
$dt y = h$.
Use the boundary condition: assume there is a no-slip condition between the fluid
and the boundary with the plate: the fluid travels at the speed of the plate.
At the upper plate $\vec v (x, y = h, z) = (u_0 , 0 , 0)$
At the lower plate $\vec v(x, y= 0, z) = (0,0,0)$
Assume laminar flow: $\vec v = (u,0,0)$: flow is only in the $x$ direction,
solution is homogeneous in $z$-direction: $\p_z u = 0, \p_z p = 0$
Now our model becomes:
$$
(* * *)
\begin{cases}
u_x = 0 \\
\varrho u_x u = -p_x + \mu (u_{x x} + u_{y y } + u_{z z}) \\
0 = -py + 0 \\
0 = 0 + 0 \\
\end{cases}
$$
$\p_z u = 0 = \p_x u \implies u = u(y)$
$\p_z p = 0 = \p_y p \implies p = p(x)$
So $(* * * ) $ becomes $0 = -p_x + \mu u_{y y}$, i.e., $p'(x) = \mu u''(y)$.
Use method of separation: $p'(x) = const = \mu u''(y) \implies p' = const
\implies$
$$p(x) = p_0 + x p_1$$
Modelling intuition: $p_1 \ne 0$ would impl;y that the pressure blows up at $x =
\pm \infty \implies $ assume that $p_1 = 0$, with that $p(x) = p_0$.
\lecture{}
The second equation becomes $\mu u''(y) = 0 \implies u(y) = ay + b$. The
boundary conditions are $u(y = 0) = 0, u(h = 0) = u_0$, so $a = \frac {u_0} h
\implies u = \gamma y$ where $\gamma = \frac {u_0} h$
$\gamma = \frac {u_0} {h} $ is the \emph{shear rate} which has dimension $\frac
1t$.
So we have a solution:
$\vec v = \begin{pmatrix} \gamma y \\ 0 \\0 \end{pmatrix}$ and $p = p_0$
Remark: The stress tensor is given by
$$T = -p \mathbb I + 2\mu D = -p_0 \mathbb I + \mu(\nabla v + {\nabla v}^T) = -p_0
\mathbb I + \mu \begin{pmatrix}0 & \gamma & 0 \\ \gamma & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $$
So the stress through a horizontal plane, for example $ \{ y = 0\} ,
\vec n = (0,1,0)$, is given by
$$
T \vec n = \left(-p_0 \mathbb I + \mu \begin{pmatrix} 0 & \gamma & 0 \\
\gamma & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) \begin{pmatrix} 0 \\ 1 \\
0\end{pmatrix} = \underbrace{-p_0 \begin{pmatrix} 0\\1\\0
\end{pmatrix}}_{\vec t_s} +
\underbrace{\mu
\begin{pmatrix} \gamma \\ 0 \\ 0 \end{pmatrix} }_{\vec t_p}
$$
$\vec t_s$ --- the shear component.
$\vec t_p$ --- the normal component.
\subsubsection{Shear Test}
A Shear test can be used to investgate whether a fluid is Newtonian (where
stress is linear with respect to $\gamma$) and what the shear viscosity is.
Put the fluid between two plates and move the upper plate with differnet speeds,
$\gamma = \frac {u_0}{h}$. Measure the force (stress $\times$ area), to see if
it is linear with respect to the velocity of the top plate.
Since shear stress $\vec t_s = \mu \gamma \begin{pmatrix} 1 \\ 0 \\ 0
\end{pmatrix} $, the gradient of your shear stress / shear rate graph is the
shear viscosity $\mu$.
\subsection{Poiseuille Flow}
Steady flow through a cylindrical pipe of length $L$ with radius $R$.
Use the incompressible Navier-Stokes equation written in cylindrical
coordinates.
Write the problem in polar coordinatnes about the centre of the pipe, with $z$
running along its length:
$\vec v = (v_R, v_\theta, v_z) = v_r \vec e_r + v_\theta \vec e_\theta
+ v_z + \vec e_z$, and
$\vec f = f_r \vec e_r + f_\theta \vec e_\theta + f_z \vec e_z$,
$x = r\cos \theta$ and $y = r \sin \theta$ and $z = z$.
The incompressible Navier--Stokes system for newtonian fluid in
cyndrical coordinates is:
\begin{aligned}
&\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right)\\
&\quad=-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]+\rho f_{r}\\\\
&\rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}\right)\\
&\quad=-\frac{1}{r} \frac{\partial p}{\partial
\theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}
\frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}}
\frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}}
\frac{\partial v_{r}}{\partial \theta}+\frac{\partial^{2} v_{\theta}}{\partial
z^{2}}\right]+\rho f_{\theta}\\ \\
&\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)\\
&\quad =-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r}
\frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial
r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial
\theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho f_{z}\\ \\
&\frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}=0
\end{aligned}
Unlike before there is pressure difference across the length ($z$) of the pipe
and the flow is coming from the pressure difference.
The boundary conditions are $\vec v = \begin{pmatrix} 0\\0\\0 \end{pmatrix} $ at
$r = R$ (no-slip boundary condition). $p(z = 0) = p_0$ and $p(z = L) = p_1 <
p_0$.
$\vec v = \begin{pmatrix} v_r \\ v_\theta \\ v_z \end{pmatrix} $
Again assume laminar flow (trajectory not depending on $\theta$ or $r$).
The velocity only has a $z$ component:
$v_r(z = 0) = 0$ and $v_\theta(z = 0) = 0$
$v_r(z = L) = 0$ and $v_\theta (z = L) = 0$
$v_\tehta = v_r = 0 \implies \vec v = \begin{pmatrix} 0 \\ 0 \\ v_z
\end{pmatrix} $
And assume the solution satisfies rotational symmetry
$v_z = v_z(r,z)$ and $p = p(r,z)$.
And assume body forces are $0$.
Now we can get rid of most of the Navier Stokes terms because of these
assumptions which leaves the governing equations
$$
\begin{cases}
0 = \p_r p \\
\varrho v_z \frac {\p v_z} {\p z} = -p_z + \mu (\frac 1r \p_r( r \p_r
v_z ) + \p _{z z} v_z)\\
0 = \p_z v_z
\end{cases}
$$
$\implies p = p(z) $ and $v_z = (r)$ and $p'(z) = \mu(v_z'' (r) + \frac 1r v_z'
(r)$
Use method of separation: $p'(z) = constant = \mu (v_z '' + \frac 1r v_z')$
Use $p (z = 0) = p_0$ and $p(z = L) = p_1$ $\implies$
$p = p_0 + \alpha z$ and $l(L) = p_1 = p_0 + \alpha l \implies \alpha = \frac
{p_1 - p_0 } L$
$\implies p(z) = p_0 + \frac {p_1 - p_0}L z$
$\frac {p_1 - p_0} L = \mu (v_z'' + \frac 1r v_z ' ) $
$$\frac r \mu \frac {p_1 - p_0} L = r v_z '' + vz' = (rvz') ' $$
Integrate
$$\frac {r^ 2} 2 \frac {p_1 - p_0} {\mu L} = r v_z ' - C$$
Integrate
$$v_z ' = \frac r2 \frac {p_1 - p_0} {\mu L} + \frac 1r C$$
Integrate using $v_z(R) = 0$
$$v_z = (\frac {r^2}2 - \frac {R^2} 2) \frac {p_1 - p_0} {2\mu L} + C \log r$$
If $C \ne 0$ the velocity would blow up towards the centre of the pipe, so $C =
0$.
$$\implies v_z =
\begin{pmatrix} 0 \\ 0 \\ R^2 - r^2 \end{pmatrix}
\frac {p_0 - p_1} {4 \mu L} $$
So you get a parabolic velocity profile.
The stress tensor in cylindrical coordinates is given by:
$$T = \begin{pmatrix} -p & 0 & \mu v_z' \\ 0 & -p & 0 \\
\mu v_z ' & 0 & -p \end{pmatrix} $$
Eg the stress at the surface of a cylinder with radius $r < R$, with normal
to the cylinder of $\vec n = \begin{pmatrix} 1\\0\\0 \end{pmatrix}
\implies$ $T \vec n = \begin{pmatrix} -p \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ \mu v_z '\end{pmatrix} = \vec t_p + \vec t_s$, shear stress and
normal stress.
\section{Closing remarks}
\begin{enumerate}
\item Vorticity: the curl of the velocity at a specific point
$$\vec \omega = \nabla \times \vec v = \begin{pmatrix} \frac {\p
w} {\p y} - \frac {\p v} {\p t} \\ \frac {\p v} {\p t} - \frac {\p w }
{\p x} \\ \frac {\p v} {\p x} - \frac {\p u} {\p y} \end{pmatrix} $$
It is like `how much the particle rotates'.
For example in plane Couette flow: $\vec v = \begin{pmatrix} \gamma y \\ 0
\\ 0 \end{pmatrix} $, the vorticity is $\vec \omega = \nabla \times \vec v
= \begin{pmatrix} 0 \\ 0 \\ - \gamma\end{pmatrix} $
\item
Helmholtz Representation Theorem
Let $\vec q (\vex x) : \R^3 \to \R^3$ diffble, then
$\vec q (\vec x) = \nabla \phi + \nabla\times \vec g $ where
$\phi:\R^3 \to
R$ and $\vec g: \R^3 \to \R^3, \nabla \cdot \vec g = 0$.
It can be split into the scalar potential with divergence and no rotational
component (curl) and
the vector potential that is pure rotation.
\end{enumerate}
\week{}
\lecture{}
\pagebreak
\appendix

Loading…
Cancel
Save