Browse Source

11.1 11.2

master
alistair 3 years ago
parent
commit
8c400ed12f
  1. 178
      notes.tex

178
notes.tex

@ -2963,6 +2963,180 @@ $$\nabla \cdot \vec v = 0$$ @@ -2963,6 +2963,180 @@ $$\nabla \cdot \vec v = 0$$
\week{}
\lecture{}
\subsection{Conservation of linear (translational momentum)}
Balance law for momentum
$$\iiint _{R(t) } \varrho (\vec x, t) \vec v (\vec x, t) \: d\vec V = \iint \vec
t \: ds + \iint \varrho(\vec x, t) \vec f (\vec x , t) \: d\vec V $$
$\vec f \in \R ^3$ is body forces
$\vec t \in \R^3 $ is stress $force / area$ through the boundary at $\vec x$.
(through an infinitesmilly small segment of the surface: the orientatino is the
important part.) $\vec t = \vec t(t, \vec x, \vec n)$. ($t$ means time $\vec t$
stress)
Consider the normal stresses,
\begin{itemize}
\item
$\vec t_x$ stress through out the plane $x=0$
\item $\vec t_y $ stress throughout the plane $y=0$ with normal $\vec n_y = \begin{pmatrix}
0\\1\\0 \end{pmatrix} $
\item $\vec t_z$ stress through the plane with the normal $\vec n_z = \begin{pmatrix} 0 \\
0 \\ 1\end{pmatrix} $
\end{itemize}
To relate the $\vec t$ to $\vec t_x$, $\vec t_y$ and $\vec t_z$ consider the
cauchy tetrahedron.
\subsubsection{Cauchy Tetrahedron}
A tetrahedron with side lengths $A,B,C$, where each side is one of these
fundamental planes, and the edges are $\vec A = (A,0,0),\; \vec B = (0,B,0),\;
\vec C = (0,0,C)$.
Notation: $\Delta A$ is the area of the triangle $\vec A \vec B \vec C$ and
$\Delta A_x$ is the area of the triangle $\vec B \vec C \vec 0$.
Consider the forces acting on the (infinitessimally small) tetrahedron:
$$-\vec t_x \Delta A_x - \vec t_y \Delta A_y - \vec t_z \Delta A_z + \vec t
\Delta A = 0$$
Note: the reason for the negative signs is that the outer unit normals of
$A_x,A_y,A_z$ are $(-1,0,0), (0,-1,0) $ and $(0,0,-1)$.
\begin{align*}
\Delta A_x = n_1 \Delta A \\
\Delta A_y = n_2 \Delta A \\
\Delta A_z = n_3 \Delta A \\
\end{align*}
\lecture{}
$t_x = \begin{pmatrix} T_{11} \\ T_{12} \\ T_{13}\end{pmatrix} $
$t_y = \begin{pmatrix} T_{21} \\ T_{22} \\ T_{23}\end{pmatrix} $
$t_y = \begin{pmatrix} T_{31} \\ T_{32} \\ T_{33}\end{pmatrix} $
Gives $\vec t = T^T \vec n$ where $T$ is the \emph{Cauchy stress tensor}
$$ T = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} &
T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} $$
Implies $\vec t$ is give by a linear map .
$$\vec t(t,\vec x, \vec n) = T^T(t,\vec x) \vec n$$
And substituting this, the balance law for momentum now reads
$$\vec d {dt} \iiint_{R(t)} \varrho\vec v d V(\vec x) = \iint_{\p R(t) } T^T
\vec n \: dS + \iiint_{R(t)} \varrho\vec f \: dV$$
In differential form
$$D_t (\varrho \vec v) + \varrho \vec v (\Delta \cdot \vec v) = \nabla \cdot
t + \varrho \vec f$$
Where $\nabla \cdot$ acts column-wise.
$$\nabla \cdot T =
\begin{pmatrix}\p_x T_{11} &\p_y T_{12} &\p_z T_{13} \\
\p_x T_{21} &\p_y T_{22} &\p_z T_{23} \\
\p_x T_{31} &\p_y T_{32} &\p_z T_{33} \end{pmatrix} $$
\lecture {}
The left hand side of $( * * ) $ can be written as
$$\varrho D_t \vec v + \vec v \cdot D_t \varrho + \vec v \varrho(\nabla \cdot
\vec v) = \varrho D_t \vec v + \vec v (D_t \verrho + \varrho (\nabla \cdot \vec
v))$$
Notice the rightmost part is the continuity equation from a couple lectures ago,
which is equal to zero.
So the momentum equation in material coordinates is given by
$$\varrho D_t \vec v \nabla \cdot T + \varrho \vec f$$
\subsection{Conservation of angular momentum}
The angular momentum of a piece of mass at a position $\vec x$ with velocity
$\vec v$ is given by
the cross product of $\vec v$ and momenum $m\vec v$.
$$\vec l = \vec x \times (\vec v m )$$
\marginnote{$\vec a \times \vec b = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2
b_1 \end{pmatrix}$}
Write the same balance law as for linear momentum but take the cross product of
everything with the position.
$$\frac d {dt}\iiint_{R(t)} \vec x \times (\varrho \vec v) \: dV(\vec x) =
\iint_{\p R(t)} \vec x \times (T^T \vec n) \; dS(\vec x) + \iiint_{R(t)} \vec x
\times (\varrho f) \: dV(\vec x)$$
Use notation $T = \begin{pmatrix} \vec t_x \\ \vec t_y \\ \vec t_z
\end{pmatrix} = (\vec t_1 | \vec t_2 | \vec t_3)$
and so $T^T \vec n = \begin{pmatrix} \vec t_1 \cdot \vec n \\ \vec t_2 \cdot \vec n \\ \vec t_3 \cdot \vec n \end{pmatrix} $
Writing the frist component of the balance law only:
$$
\begin{gathered}
\frac{d}{d t} \iiint_{R(t)} \varrho\left(x_{2} v_{3}-x_{3} v_{2}\right) d
V-\iiint_{R(t)} \varrho\left(x_{2} f_{3}-x_{3} f_{2}\right) d V- \\
-\iint_{\partial R(t)}\left(x_{2} \vec{t}_{3} \cdot \vec{n}-x_{3} \vec{t}_{2} \cdot \vec{n}\right) d S=0
\end{gathered}
$$
Or in differential form
$x_1 \cdot $ (3ed component of $(*) ) - x_3 ($ 2nd component of $(*)) - T_{23} +
T_{32} \implies T_{23} = T_{32}$ and if you do the other components of the
equation
$T_{13} = T_{31}$ and $T_{12} = T_{21}$, so we find $T$ is symmetric.
\begin{itemize}
\item As a consequence of the conservation of angular momentum, $T$ must be
a symmetric matrix.
\end{itemize}
So the full system we have so far is
\begin{itemize}
\item Continuity equation
$$\p_t \rho + \nabla (\rho \vec v) = 0$$
\item $$\rho D_t \vec v = \nabla \cdot T + \rho \vec f,\quad T = T^T$$
\end{itemize}
What is missing is the constitutive relation for $T$
\subsection{Material frame indifference}
Any constitutive law should not depend on translation or rotation: any rigid body motion.
$Q(t) \vec c + b(t) $ where $b(t) \in \R^3$ and $Q(t) \in \R^{3\times 3}$ are
smooth functions, and $Q$ is a rotation matrix. $Q Q^T = \mathbb I \forall t >
0$, and $\det Q = 1$.
\begin{enumerate}
\item Objectivity: the stress under one coordinate frame according to the
constituvie law is the same in the
other coordinate frame. You should be able to compute the stress tensor
in either and get the same result.
\item
\end{enumerate}
\pagebreak
\appendix
@ -3013,6 +3187,10 @@ $$ @@ -3013,6 +3187,10 @@ $$
L(f(t))=\frac{1}{1-e^{-s p}} \int_{0}^{p} e^{-s t} f(t) d t
$$
\chapter{Misc}
\section{Cross Product}

Loading…
Cancel
Save