Browse Source

lec29

master
alistair 3 years ago
parent
commit
53d8fcb1eb
  1. 140
      notes.tex

140
notes.tex

@ -2676,7 +2676,8 @@ Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$ @@ -2676,7 +2676,8 @@ Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$
\week{}
\lecture
\begin{ex} Uniform dilation
\begin{ex} Uniform dilatation
Motion according to $A \mapsto X(A,t) = \alpha(t) A$ where
$\alpha(t) \ge 0, \alpha(0) = 1$.
@ -2700,7 +2701,7 @@ Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$ @@ -2700,7 +2701,7 @@ Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$
{\alpha(t)} x = (1 - \frac 1 {\alpha(t)}) x$
$v(x,t) = v(\frac 1{\alpha(t)} x, t) = \alpha ' (t) \frac 1
{\alphta(t)} x$
{\alpha(t)} x$
$\implies \p_t u \ne v$ like in one dimension.
@ -2810,7 +2811,7 @@ so how both the thing moves as a result of its own movement and it being @@ -2810,7 +2811,7 @@ so how both the thing moves as a result of its own movement and it being
transported by the material.
\begin{ex}
Uniform dilation
Uniform dilatation
$u(x,t) = 1 - \frac 1 {\alpha(t)}x$
@ -2829,6 +2830,139 @@ transported by the material. @@ -2829,6 +2830,139 @@ transported by the material.
\end{ex}
\lecture{}
\subsection{Reynold's Transport theorem in 3D}
\marginnote{October 8 Lec 29}
The major technical tool to derive it is the fact that for $M(t) \in \R^{3\times
3}$ (smooth, invertible) it holds that.
$$\frac d {dt} \det (M(t)) tr(M^{-1} \frac d{dt} M)$$
For $M = F = \nabla_A X$ and $j = \det F$.
$$\frac d {dt} J = J tr (F^{-1} \frac d {dt} F) = \left|\frac d {dt} \nabla_A (X - A)
= \nabla_A V \right|$$
{In the trace of the matrix, the multiplication commutes $|tr(AB) =
tr(BA) | \implies J tr(F^{-1} \nabla_A V) = J tr(\nabla_A V F^{-1})$}
Chain rule: $\nabla_A V = \nabla_Av(X(A,t),t) = \nabla_{\vec x} \vec v \cdot \nabla_A X = \nabla_{\vec x} \vec v
\cdot F$
$$J tr(\nabla_A V F^{-1}) = J tr(\nabla_{\vec x } \vec v) = \begin{pmatrix}
v_{x_1}^1 & v_{x_2}^1 &v_{x_3}^1 \\
v_{x_1}^2 & v_{x_2}^2 &v_{x_3}^2 \\
v_{x_1}^3 & v_{x_2}^3 &v_{x_3}^3 \\
\end{pmatrix} = J \nabla \cdot \vec v $$
Now consider $R(t = 0) \suybset \R^3$, a piece of volume with a piecewise smooth
surface and $R(t) = X(R(t = 0), t)$.
\marginnote{Want to create a framework to use the balance laws in 3D.}
Consider a quantity $f(x,t)$ (smooth).
\marginnote {Change of variables to use material coordinates}
$$\frac d{dt} \iiint _{R(t)} f(x,t) \; d\vec x = \frac d {dt} \iiint_{R(t=0)} f(X(A,t) ,
t) \det (F)\; d A_1\: d A_2 \: d A_3 $$
$$= \iiint_{R(0)} \underbrace{\frac d {dt} f(X(A,t),t)}_{D_t f} J + f(X(A,t),t) \p_t J\; d\vec A $$
$$= \iiint_{R(0)} (D_t f + f(\nabla \cdot \vec v)) J \; d\vec A = \iiint_{R(t)}
(D_t f + f (\nabla \cdot \vec v)) \; d \vec x$$
$$= \iiint_{R(t)} (\p_t f + \underbrace{\nabla \cdot (f \vec v))}_{=\nabla f
\vec v + f \nabla \cdot \vec v} \; d\vec x = \iiint_{R(t)} \p_t f \; d\vec x +
\iint_{\p R(t) f \vec v \cdot \vec nn \: dS(\vec x)}$$
Which uses the divergence theorem:
$$\iiint_R \nabla \cdot \vec g \: d \vec x = \iint_{\p R} \vec g \cdot \vec n dS(\vec
x)$$
We get two ways of writing \textbf{Reynold's Transport Theorem} in 3D:
\begin{align*}
\frac {d} {dt} \iiint_{R(t)} f (\vec x ,t )\; d\vec x &= \iiint _{R(t)} \p_t f
d \vec x + \iint_{\p R(t)} f \vec v \cdot \vec n \; dS(\vec x) \\
&= \iiint_{R(t)} (D_t
f + f(\nabla \cdot
\vec v)) \; d\vec x
\end{align*}
\subsection{Balance Laws in 3D}
Note; $\vec J :=$ flux, $J :=$ jacobi determinant.
$$\frac d {dt} \iint_{R(t)} f(\vec x, t ) \; d\vec x = - \iint_{\p R(t)} \vec J
\cdot \vec n \; d S(\vec x) + \iiint_{R(t)} Q(x,t) \; dV$$
$Q(\vec x, t) :=$ creation or depletion.
Using reynold's transport theorem and the divergence theorem:
$$\iiint_{R(t)} (D_t f + f(\nabla \cdot \vec v) ) \; d \vec x = \iiint_{R(t)}
(-\nabla \cdot \vec J + Q(\vec x, t)) \; d\vec x$$
Since $R(t) = X(R(0), t) $ is arbitrary, we use the dubois Reymond lemma to
conclude that the integrand vanishes:
$$D_t f + f(\nabla \cdot \vec v) = - \nabla \vec J + Q(\vec x, t)$$
$$\p_t f + \nabla \cdot (f \vec v) = - \nabla \cdot \vec J + Q(\vec x, t)$$
Which are the two differential versions of the balance law.
\subsubsection{Continuity Equation}
Consider the mass density $\varrho = \varrho(\vec x, t)$, (mass per volume).
Mass conservation: $\vec J = 0, Q = 0$.
$$\frac d {dt} \iiint_{R(t)} \varrho(\vec x ,t) \; d\vec x = 0$$
The corresponding differential formulation is:
$$D_t \varrho + \varrho (\nabla \cdot \vec v) = 0$$
$$\p_t \varrho \nabla \cdot (\varrho \vec v) = 0$$
If the material is incompressible $(\varrho = $ a constant $)$, it holds that
$\p_t \varrho = \p_{x_i} \varrho = 0$ and the continuity equation
$\p_t \varrho + \nabla_x \varrho \vec v + \varrho(\nabla \cdot \vec v) = 0$
reduces to
$$\nabla \cdot \vec v = 0$$
\begin{ex} $ $
\begin{itemize}
\item
Shear flow $X(A,t) = \begin{pmatrix} A_1 + \alpha(t) A_2 \\ A_2\\A_3
\end{pmatrix}$. In this case we had $\vec v = \begin{pmatrix} \alpha'(t)
X_2 \\ 0 \\ 0 \end{pmatrix} \implies \nabla \cdot \vec v = \p_{x_1}
(\alpha'(t) X_2) = 0 \implies$ simple sheer is possbile for an
incompressible material.
\item
Uniform dilatation: $X(A,t) = \alpha(t) A$
We found $\vec v (\vec x, t) = \frac {\alpha '}{\alpha} \vec x$.
$$\nabla \cdot v = \nabla \cdot (\frac {\alpha'}{\alpha} \vec x) =
\frac {\alpha'}{\alpha}(\p_{x_1}x_1) + \p{x_2} x_2 + \p_{x_3} x_3 = 3
\frac {\alpha ' } {\alpha}$$
So uniform dilatation is not possible with an incompressible
material.
\end{itemize}
\end{ex}
\week{}
\lecture{}
\pagebreak
\appendix

Loading…
Cancel
Save