Browse Source

readme

master
alistair 3 years ago
parent
commit
4cf629aa84
  1. 40
      README.md
  2. 27
      notes.tex

40
README.md

@ -0,0 +1,40 @@ @@ -0,0 +1,40 @@
[alistairmichael.com/notes/applied.pdf](https://alistairmichael.com/notes/applied.pdf)
## Compiling
Use pdflatex with `pdflatex --interaction nonstopmode %O --shell-escape %S`
Or latexmk with shell escape set in your `.latexmkrc`
```
$pdf_mode = 1; # tex -> pdf
$pdflatex = 'pdflatex --interaction nonstopmode %O --shell-escape %S'
```
```
\usepackage{attachfile}
\usepackage{caption}
\usepackage{tocloft}
\usepackage{enumitem}
\usepackage{marginnote}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bookmark}
\usepackage{pgfplots}
\usepackage{import}
\usepackage{xcolor}
\usepackage{soul}
\usepackage[pdf]{graphviz}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage[english]{babel}
\usepackage{geometry}
```

27
notes.tex

@ -8,8 +8,9 @@ @@ -8,8 +8,9 @@
\renewcommand{\captionfont}{\small}
\usepackage[english]{babel}
\usepackage{tocloft}
\usepackage{titlesec}
\usepackage{enumitem}
\usepackage{marginnote}
\usepackage{graphicx}
@ -39,7 +40,7 @@ @@ -39,7 +40,7 @@
\usepackage{amssymb}
% for mathbb
\usepackage[english]{babel}
\usepackage[top=2cm, bottom=3cm, outer=7cm, inner=1cm, heightrounded,
marginparwidth=5cm, marginparsep=0.3cm]{geometry}
@ -47,6 +48,8 @@ marginparwidth=5cm, marginparsep=0.3cm]{geometry} @@ -47,6 +48,8 @@ marginparwidth=5cm, marginparsep=0.3cm]{geometry}
\title{MATH3102 Lecture Notes}
\author{Alistair Michael}
\titleformat{\chapter}{\normalfont\huge\bf}{\thechapter.}{20pt}{\huge\bf}
\graphicspath{{images/}}
\newcommand{\sforall}{\enspace\forall}
@ -148,8 +151,10 @@ marginparwidth=5cm, marginparsep=0.3cm]{geometry} @@ -148,8 +151,10 @@ marginparwidth=5cm, marginparsep=0.3cm]{geometry}
\maketitle
This document has its \LaTeX{} source attached. \attachfile[description=Document
text source,icon=Paperclip]{notes.tex}
This document can be found at
\href{https://alistairmichael.com/notes/applied.pdf}{alistairmichael.com/notes/applied.pdf} with source available at
\href{https://git.topost.net/alistair/applied-notes}{git.topost.net/alistair/applied-notes}.
It contains many typos and errors.
\tableofcontents
\listoflecture
@ -1749,7 +1754,7 @@ $$R_0 U_{tt} = R_0 F + T'(U_A) U_{AA}$$ @@ -1749,7 +1754,7 @@ $$R_0 U_{tt} = R_0 F + T'(U_A) U_{AA}$$
$$\lambda = \frac {\ell }{\ell_0} = \frac {\ell - \ell_0 + \ell_0} {\ell_0} \sim
\epsilon + 1 $$
$\eimplies$ the reference state has $\lambda = 1 \Leftrightarrow \epsilon = 0$
$\implies$ the reference state has $\lambda = 1 \Leftrightarrow \epsilon = 0$
For a small enough $\epsilon$ any material will exhibit a linear stress--strain
relation.
@ -1908,7 +1913,7 @@ For example for rubber the stress strain raltion looks something like @@ -1908,7 +1913,7 @@ For example for rubber the stress strain raltion looks something like
\begin{figure}[htpb]
\centering
\begin{tikzpicture}{testppop}
\begin{axis}[ytick=none,xtick=none,xlabel=$\epsilon$, ylabel=$T$,]
\begin{axis}[ytick={},xtick={},xlabel=$\epsilon$, ylabel=$T$,]
\addplot[domain=-1:2, samples=90,color=blue,]{ (x -0)^3 + 0};
\end{axis}
\end{tikzpicture}
@ -2075,8 +2080,8 @@ $\implies$ the solution is given by D'Alembert's formula where $\rho=0$ and $f$ @@ -2075,8 +2080,8 @@ $\implies$ the solution is given by D'Alembert's formula where $\rho=0$ and $f$
mode of the forcing term.
\begin{center}
\begin{tikzpicture}{hy}
\begin{axis}[xtick={3.141},xticklabels={$\ell$}, ytick=none,]
\begin{tikzpicture}{notes-figure9}
\begin{axis}[xtick={3.141},xticklabels={$\ell$}, ytick={},]
\addplot[domain=0:3.141 , samples=90, color=green]{ cos(deg(x))};
\addlegendentry{$n = 1$}
\addplot[domain=0:3.141 , samples=90, color=black]{ cos(2 * deg(x))};
@ -2432,7 +2437,7 @@ viscoelastic models explicitly very easiliy} @@ -2432,7 +2437,7 @@ viscoelastic models explicitly very easiliy}
Use laplace transform on $(*)$, $\hat U = L(U)$
$$\begin{cases}
R_0 s^2 \hat U = L(G) s \hat U_{A A} $ where $L(G) = \fraC {\hat E}{s +
R_0 s^2 \hat U = L(G) s \hat U_{A A} $ where $L(G) = \frac {\hat E}{s +
\frac 1 {\tau_0}} \\
\hat U_A (A = 0, s) = \hat F(s) \\
\lim_{A \to \infty} \hat U(A, s) = 0
@ -2482,7 +2487,7 @@ viscoelastic models explicitly very easiliy} @@ -2482,7 +2487,7 @@ viscoelastic models explicitly very easiliy}
&=\int_{\sqrt{\frac {R_0}{\hat E}}A}^t Q(A, \hat t) F(t - \hat t) \: d\hat t \times H\left(t - \sqrt
{\frac{R_0}{\hat E}}A\right) \\
\implies & U \text{ is zero wherever } t < \sqrt{\frac {R_0}A} , \\
\implies & A > t\sqrt {\frac {\haat E} {R_0}} = t \sqrt{\frac {E \tau_1}{\tau_0}
\implies & A > t\sqrt {\frac {\hat E} {R_0}} = t \sqrt{\frac {E \tau_1}{\tau_0}
\frac 1 {R_0}} \\
\text{For } F(t) &= \sin(t) \\
\end{align*}
@ -2664,7 +2669,7 @@ $$J = \det F = \det \underbrace{\nabla_A X}_{\text{Jacobi matrix}} \ne 0$$ @@ -2664,7 +2669,7 @@ $$J = \det F = \det \underbrace{\nabla_A X}_{\text{Jacobi matrix}} \ne 0$$
This is essentially the impenetrability assumption from 1D continuum mechanics in
three dimensions.
At $t = 0$, $X(A, t= 0) = A \implies \F = \mathbb I \implies J = 1$
At $t = 0$, $X(A, t= 0) = A \implies F = \mathbb I \implies J = 1$
Since $J(t = 0) = 1$, $J \ne 0$ always implies $J(t) > 0$

Loading…
Cancel
Save