
CSSE2002

Alistair Michael

Contents

Contents 1
Language . 4

Variables . 4
References . 4
Mutability . 4

Classes . 5
Overloading . 5
Interfaces . 6
Casting . 6

Exceptions . 6
Java Collections . 6

Stack . 7
Generic Types . 7

Lists . 7
Different Implementatiosn . 7
Methods . 7

Iterators . 8
Kinds . 8

Lists . 8
Sets . 8

TreeSet . 8
HashSet . 8

Map . 8
Automated Testing . 8

Terms . 8
Procedures . 9

1

CSSE2002 Alistair Michael

Test Driven Design . 9
Junit4 Framework . 9
Assert . 10
Setup . 10
What to test . 10
Things to test . 10
Code Coverage . 10
Procedural Abstraction . 11

Specifications . 11
Contract-driven design . 11
Defensive Programming . 12
Substitution Principle . 12

Miscellaneous Java . 12
Instanceof . 12

Questionable Uses . 13
Newlines . 13
Pre / post increment . 13
Ternary . 13
Final keyword . 13

Variables . 13
References . 14
Methods . 14
Classes . 14

Abstract . 14
Short Circuit evaluation . 14

StringBuilder / StringBuffer . 14
Copying (clone) . 15
Properties of .equals() . 16

Hash Codes . 16
Input-Output . 16

Scanners . 16
Encoding . 17
Streams . 17

java.io.InputStream . 17
Buffered input . 17
Readers . 18
Try with Resources . 18
Parsers . 18

Output . 18
PrintWriter . 19

Serialisation . 19
Limitations . 19

Parsing Text Files . 19
Split Strings . 19
Regular Expressions . 20
Converting Strings . 20
Objects . 20
File Objects . 20

2

CSSE2002 Alistair Michael

Exit . 20
JavaFX . 20

Stage . 20
Layout Panes . 21
Controls . 21
Panes . 21
Canvas . 21
EventHandlers . 21

Better Design . 22
Anonymous Classes . 22

TextFields . 23
Dialogs . 23

FileChooserDialog . 23
Design Quality . 24

Cohesion . 24
Coupling . 24

Law of Demeter . 24
Mindless Classes . 25
God Classes . 25
Mitigation . 25
Fragile Super Class . 25

Downcall . 25
Further Reading . 26

GUI Design . 26
Why MVC? . 26
How MVC: Challenges . 26
Callbacks and Observers . 27
Input Processing . 27
Model View Controller . 27

Model View Adapter . 27
Model View Presenter . 28
Model View ViewModel . 28

Generic Programming . 28
Generic Methods . 29
Bounded Type Parameters . 29
Generic Inheritance . 29
Wildcards . 29
Implementation . 29
Restrictions on Generics . 30

Object Oriented Design . 30
Textual Analysis . 30
Common Class Patterns . 30
Class-Responsibilities-Collaborators . 30

OOPSLA89 Paper Summary . 30
Functional Abstractions in Java . 31

Lambdas . 31
Functional Interfaces . 32
For Each loop . 32

3

CSSE2002 Alistair Michael

Method References . 32
Standard Functional Interfaces . 33

Streams . 33
Intermediate Streams . 34
Terminal Streams . 34

Recursion and Sort Algorithms . 34
Java Sorting . 34

Merge Sort . 35
Quick Sort . 35

Which is Better? . 35

pdf version
The markdown source for this page is available here.
Contributions are welcome.

Language

Variables

• Primitives vs Classes
• References
• Stack vs Heap

All local variables (references and primitives) are stored on the stack.
Heap memory exists independently of the callstack, and all objects are stored on the

heap. Hava has a garbage collector which deletes objects when they are no longer being
held.

References

This means all objects in java are held by reference.
So for objects equality has this meaning:
a = b : a now refers to the same thing as b
a == b : Does a refer to the same piece of memory as b?
While for primitive types a = b assigns a the value of b, and a == b compares the

value of a and b.
If you want to compare the value of objects you use a.equals(b).
So objects are always passed by reference and primitives are always passed by value.
Note: To compare floating point values always use Math.abs(a - b) < threshold.

Mutability

Strings are immutable, for efficiency, the code

String a = "AAA";
String b = "AAA";

4

https://alistairmichael.com/notes/csse2002/csse2002.pdf
https://git.topost.net/alistair/csse2002-notes/src/branch/master

CSSE2002 Alistair Michael

Will produce two variables which both reference the same string.
In general, string-modification methods return a new reference to a new string.
Meanwhile, arrays and Lists are mutable, their contents can be changed.

Classes

Inheritance represents a specialisation relationship between parent and child, while in-
terfaces separate implementations of a similar abstraction.

Interfaces define how a to interact with a class or object.

• when and why would you define an interface instead of a superclass and vice versa
• What is the purpose of @override-ing a method.
• What is the benefit of polymorphism and dynamic binding for design.

Overloading

Methods are resolved at compile-time so for the following code:

public class A {
public int foo(Object o) {

return 1;
}

}

public class B extends A {
public int foo(Object o) {

return 2;
}

public int foo(int i) {
return 3;

}
}

Running the following code will return 2, not 3.

Object o = new A();
A a1 = new A();
A a2 = new B(); // B is implicitly upcast to A
a2.foo(20); // resolves to B.foo(Object)

Because a2 is declared as type A, the compiler only knows about the method that
takes an object.

Java will only let you access part of an object if it is sure it exists, at compile time.
However an objects type is computed at compile time will determine what you can do
with it.

When executing a method, java finds the closest up the class heirachy, according to
the type it thinks that object is, (according to cast or declaration) that matches the
method signature (name + argument types and order). Then when calling the method,

5

CSSE2002 Alistair Michael

it calls whatever function reference is contained in the object actually stored by that
variable.

Interfaces

Defines which methods a class must implement.

Casting

Casting changes how the compiler interprets a specific object, ie what type it thinks it
is.

Upcasts can be implicit, but downcasts cannot. This means you can pass a String
to a method that expects Object without explicitly casting, for example.

You can implicitly cast from float to double, since a float has less precision and
they have a common super-class.

Exceptions

Exceptions are used to recover from unexpected problems or bad state.
Checked Exceptions (IOException) are checked for at compile time so are mandatory

to handle if it is possible for a method to cause them. They can be handled either by
adding them to the method signature to be handled elsewhere, or catching them in a
try-catch block.

Exception Kind Parent Cause

Error Throwable An error in the program execution,
unrecoverable

IOException Exception Input-output Error
FileNotFoundException IOException Cannot find a file
RuntimeException Exception An exception at runtime
ArithmeticException RuntimeExceptionDivide by 0, and FP errors
NullPointerException RuntimeExceptionDoing something with an unintialised

reference
IllegalArgumentExceptionRuntimeExceptionA method is invoked with wrong

arguments
IllegalStateException RuntimeExceptionA method invoked at the wrong time
IndexOutOfBoundsExceptionRuntimeExceptionAccesing an array element with an invalid

index.
ClassCastException RuntimeExceptionPerforming an impossible cast

See also: Try With resources

Java Collections

• can not store primitive types, there are wrapper classes to use

– Integer, Boolean, Byte, Double, Character, Short, Long, Double
– automatically converted on construction

6

CSSE2002 Alistair Michael

Stack

• Last in first out
• empty()

– empty stack

• peek()

– return reference to top of stack

• pop()

– return top of stack and remove from stack

• push(obj)

Generic Types

• collections contain generic types. The specific type of a generic is defined when the
object is declared.

Lists

• grow and shrink automatically
• walk along
• insert anywhere
• remove an item
• check if an item is in the list

Different Implementatiosn

• LinkedList

– adding and removing items in the middle

• ArrayList

– good for random access

• Vector

– for concurrency

Methods

• size(); the number of elements in the list

// literally just look up the documentation

7

CSSE2002 Alistair Michael

Iterators

• more flexible way of moving through the list than using for each loops
• Call .iterator() method on another collection to get the iterator.
• starts before the 1st element in the list
• iterator.next() returns the next element in the list
• it.hasNext() return true if there is another element in the list.
• they can manipulate the contents of the collection
• if you modify one iterator, other iterators on the same object will fail fast

Kinds

• ListIterator; knows more about how to iterate lists lists list.listIterator()

– .add() method (at iterators current position)

Lists

• ArrayList LinkedList et al
• Can store duplicates
• Automatically grows and shrinks depending on what you do to it
• Ordered
• Iterable

Sets

• An orderless collection of objects
• Every value must be unique

TreeSet

E needs to implement Comparable

HashSet

E neeeds to implement hashCode() and equals(), and have the label.

Map

• stores unordered key-value pairs
• Map<Integer, String>; set type of key and value
• not good for iterating
• should not use mutable objects as keys although it works unless you change the

object after setting it as the key
• All keys must be unique, but not the values.

Automated Testing

Terms

• unit testing

8

CSSE2002 Alistair Michael

• regression testing
• black box
• white box
• test driven development

Procedures

• unit testing

– each unit (class) works)

• integration testing

– components work together

• system testing

– does the whole program work

• acceptance testing

– do the users agree that the system does what it is supposed to

• regression testing

– does new stuff work
– has it broken old things

• blackbox testing

– test the interface does what it is supposed to without knowledge of the imple-
mentation

– does not test whether the implementation has like bad programming

• glass box testing

– knowledge of internal
– code coverage
– tests whether the complex parts of the internal is complex

Test Driven Design

• write the tests before the code
• requirements drive the code more directly
• If you find a bug that is not caught by the tests, you can write a unit test, and add

it to the regression test suite

Junit4 Framework

• Write a test class for each object

– all test methods have the @Test annotation.
– method names tell you what they do.
– use a piece of code, and use assert methods, for example Assert.assertEquals(val,

val)

9

CSSE2002 Alistair Michael

– Each test method should only test one thing (conceptually / logically)
– @Before and @After labels put on each test, are used to setup and tear-down

the environment before and after each test. To ensure they don’t interfere
with eachother.

Assert

• assertEquals
• assertArrayEquals
• assertFalse / assertTrue
• assertSame / assertNotSame
• fail
• can import all these as static methods so they can be called without the ju-

nit.etst.sjhda.Assert garbage.

Setup

• need junit and hamcrest libraries

What to test

• Input possibilities and features
• Should identify potential problem areas
• Should not be too big

Things to test

• boundary cases

– 0, negative numbers
– NULL, empty containers, sets lists

• Floating point extremities
• large datasets
• resource access denied, failed
• non-existent resources

Code Coverage

• How much of the code is tested
• statement coverage

– the code is tested by being executed once

• branch coverege

– all possible branching paths that the logic creates are executed

• path coverege

– all paths thru the loop are tested
– for for loops

10

CSSE2002 Alistair Michael

∗ init fails
∗ init test fails
∗ init test body fails
∗ init test body iterate fails

– eg recursion is also painful

Procedural Abstraction

• interested in what the methods do

– javadoc clearly explain functionality

• methods need to have one clear function

Be suspicious of

• control flow on parameter types
• long and complex methods
• repeated code
• methods that have more than one function
• can change the implementation without changing the specification

Specifications

• javadoc
• allow the implementation to be changed without changing methods that use it
• draw attention to possible consequences of implementation details
• be sufficiently restrictive if implementation is limited.
• the information needed to use the method
• be precise to avoid incorrect implementations
• have generality to allow acceptable alternative versions
• have clarity: utilise formal languages,

Contract-driven design

Meaning if the caller meets the precondition, the method guarantees that postcondition
will be true.

/**
@ require precondition
@ ensure postcondition
*/

Can use java boolean expressions to formally and precisely specify conditions as well
as using the following mathematical signifiers.

• \result return value
• a ==> b implication
• a <==> b if and only if
• \old(x) the value of x before the method

11

CSSE2002 Alistair Michael

• \forall C c for all objects c in class C
• \exists C c there exists an object of class C

Can use assert to ensure this at compile time, and can also use it as a test system
at runtime with special conditions. These can be checked at runtime using java -ea
ClassName.

Defensive Programming

Assume that input is bad.

• Explicitly check for invalid inputs

– Ensure that no dangerous behaviour results

• Always apply it to data coming from outside of the program, and treat things

• coming from inside the program as valid.

• Always reject null, because it can easily appear inside the program.

Substitution Principle

An object of a subclass type can be used at any point where a super-class’s
method is expected

• WRT to Contracts, the child is bound by the contracts with the parent.

– Parents contract must be sufficient for child’s contract.
– The child contract can only be a weakening of the parent’s precondition, that

is, the pre-condition may be weaker and the post-condition stronger, but the
precondition cannot be stronger, nor the post-condition weaker.

∗ the child must not reject any states the parent would allow (precondition)
∗ the child must not have a result that the parent does not ensure

Contracts are ‘inherited’: if you are overriding a sub-class’s method, it must still
follow the contracts of the parent, and the original version it is overriding.

Miscellaneous Java

Instanceof

expression instanceof type
Returns true if the value of expression is an instance of type type.

12

CSSE2002 Alistair Michael

Questionable Uses

• Use it in conditionals to determine what methods should be used on that thing.

– Otherwise: use encapsulation
– Put the code in the classes themselves so you do not need to use a conditional

to determine which class is being used
– use a generic interface
– use helper methods in the classes

Newlines

• println will always use the correct newline character for the operating system (at
runtine)

– Unix uses “\n”
– Windows uses “\r\n”

• System.lineSeparator() and String.format("%n") will return the correct line
separator.

Pre / post increment

• The same as C

Starting with x = 0:

expression x = returns
++x 1 1
x++ 2 1
x-- 1 2
--x 0 0

Ternary

int a = (conditional) ? do if true : do if false;

Final keyword

final has two meanings depending on its context.

Variables

public void stuff() {
final int x = 5;
x = 4; // compile error

}

In the case of member variables, they must be set once in the constructor, and nowhere
else.

13

CSSE2002 Alistair Michael

public class Chem {
public static final double AVAGADRO = 3.023e23;

}

References

It means that the reference value cannot be changed, not that the object it refers to
cannot be changed.

final Test x = new Test(10);
x.q = 15;

Will compile, you can change the state of the object without changing it’s identity.
// What about the objects hash value, for maps etc. That would probably be weird.

Methods

A method that is labelled final cannot be overwritten in a subclass.

Classes

• Cannot create new classes that inherit from final classes
• Member variables cannot be changed once initialised

Abstract

An abstract class is a class that it is not meaningful to create an object of, but is useful
in the structure of the class heirachy. An abstract class does not have to have abstract
methods.

An abstract method has no implementation, it exists to be defined later.
public abstract void doStuff();
If a class contains abstract methods, the class must also be declared abstract. And

abstract classes cannot be instantiated, although they can be extended.
This is used for defining interfaces.

Short Circuit evaluation

The entirety of a conditional statement is not computed if its value can be determined
earlier.

True || f(x) || g(x) will not execute f or g.
g(x) && False && g(x): g(x) will never get executed.

StringBuilder / StringBuffer

StringBuffer is older and slower, but threadsafe.
Strings are immutable so += on strings requires re-allocating memory, doing it in a

loop is very inefficient.
StringBuilder is not threadsafe.

14

CSSE2002 Alistair Michael

StringBuilder sb = new StringBuilder("starting text");
for (int i = 0; i ++; i < 10) {

sb.append(i);
}
System.out.println(sb.toString()); // need to use toString()

//to get the string value

Copying (clone)

Objects are always manipulated by reference, by default.

Objext x = y // makes x refer to the same thing as y

Object class has a protected .clone() method, since it is protected some work is
required to be able to use it. This is to ensure it is implemented properly for the classes
you are truing to use it for, since reference members may also need to be copied.

public class MessageHolder implements Cloneable { // need to implement
// Cloneable interface

private MessageBuilder msg;
//...
@Override
public Object clone() {

try { // have to catch CloneNotSupportedException
MessageHolder nm = super.clone();
// we can call clone() here because this class has the
// Cloneable marker interface set, indicating it is
// allowed
nm.msg = new StringBuilder(msg.toString);
return nm;

} catch (CloneNotSupportedException e) {
}
return null;

}
}

• Typically you can just call Object.clone()
• Deep-copy is not a concern for immutable objects.
• Deep-copy is general expensive

Note that:

• x.clone != x
• x.clone.getClass() == x.getClass()
• x.clone().equals(x) should usually be true, but there are practical exceptions

15

CSSE2002 Alistair Michael

Properties of .equals()

• reflexive
• symmetric (in terms of the same class type)
• transitive
• deterministic, should always give the same result, unless the objects’ state changes
• x.equals(null) is false

Be mindful of the comparability of the classes whose .equals() method you are
calling.

• If you override .equals() you also need to override .hashCode()
• x.equals(y) =⇒ x.hashCode() == y.hashCode()
• .equals() can refer to object state or object identity

– you need to make a decision on whether to include the mutable parts of the
class in computing the hashcode accordingly.

– including mutable state in the hashcode means changing the state changes
whether .equals() is true for a copy with different state.

It is probably better to use .equals() for state, since the reference provides the
object’s identity.

Hash Codes

Returns a numeric value for some given values.

• has to be deterministic
• may not neccessarily uniquely identify an object

– collisions should be rare and able to be managed
– not as good for determining object identity

• x.equals(y) =⇒ x.hashCode() == y.hashCode()
• Must be efficient, for fast lookup

– used for looking up items quickly
– comparing passwords without comparing the actual values

• if it is being used as a lookup key

– does changing the state make it a different object?

Input-Output

Scanners

There is a collection of scanner object methods that can be used to get specific items
from these filetypes.

See Javadoc

16

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/Scanner.html

CSSE2002 Alistair Michael

import java.util.Scanner;
// ...
Scanner input = new Scanner(System.in);
Scanner file = new Scanner(new File("filename.txt"));

int total = 0;
while (true) {

total += input.nextInt();
}

Encoding

Java uses unicode, chars are not neccessarily single bytes and there is no single automatic
way to translate between bytes and UTF-X chars.

So I’m assuming their environment system is less of a tranwreck than C’s.

1. Binary

• More compact
• Sensitive to system differences
• Otherwise it is more direct

2. Text

• Human readable
• Requires parseing and markup delimiters etc.
• Not really efficient for machine-interpretation as a middle abstraction

Streams

Abstractions for input and output

• Works with multiple origins of input; keyboard, disk, files, network
• Buffering
• Unified interface for different types of input/output data

java.io.InputStream

• FileInputStream; for files
• ByteArrayInputStream; get bytes from an array in memory as an input stream

Methods that use InputStreams should ask for an object of the InputStream class
(interface style calss), not its children classes.

Low-level read()

Buffered input

BufferedInputStream is a class that wraps InputStream to provide buffering to improve
performance. It can read a single character, a specific number of characters, or a line.
For other methods see javadoc

17

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/io/BufferedReader.html

CSSE2002 Alistair Michael

try {
InputStream is = new BufferedInputStream(new FileInputStream("dat"));
String s = is.readLine();

} catch (FileNotFoundException e) {
// fail

} finally {
is.close();

}

You have to then parse the returned string with string-parsing functions.

Readers

java.io.Reader is a base class for objects which read InputStreams.
new FileReader("filename")
≈ new InputStreamReader(new FileInputStream("filename"))

Try with Resources

Readers and streams need to be closed. Can use try catch and finally to close files
at the end, however close() can also throw exceptions hence Java provides try catch
syntax that automatically handles file resources.

try (BufferedReader r = new BufferedReader(new FileReader("file"))) {
r.readLine();

} catch (IOException e) {
// handle

}

Parsers

Each primitive type (int, char...) has a wrapper class and these have string parsing
methods.

int i = Interger.parseInt("1");

parseInt() will throw a number format exception if the format is invalid.
Now i = 1.

Output

For the most part just replace Input with Output and Reader with Writer.
The standard output is System.out, standard error is System.err, it is a print stream

that provides print methods.

• print(), println()
• flush() flushes output buffer
• printf(String format, Object args) Use C-style format strings.
• write(byte[] buf, int off, int len) write len bytes from a byte array.

18

CSSE2002 Alistair Michael

PrintWriter

PrintWriter is a better tool for writing characters. It can write to any type of Stream
or file. Look at the constructors in the javadoc.

You often have to flush the output because otherwise it only gets sent once the output
is full, or if it is closed.

This is important for

• interactive programs where you prompt for input
• debugging where you need outputs to be in order and up to date.

Serialisation

Converting a java object to bytes. For a class to be serialisable it must:

• Must implement Serializable interface
• Any objects referenced must also be Serializable
• Object streams can read and write to any type of Stream—to files, networks etc.
• Read using ObjectInputStream
• Write using ObjectOutputStream

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("file"));
oos.write(new Integer(5));
oos.close();
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("file"));
Integer five = ois.readObject();

Limitations

• If you change the class after saving a serialisable object and try to read it again it
will produce an version error.

• Deserialising untrusted data is very unsafe / insecure

Parsing Text Files

Often need to

• find delimiters
• split strings on delimiters
• convert strings to primitive types
• construct new objects based on parameters from a file

Split Strings

String[] splitstrings = "a b c".split("delimiter");
String[] splitstrings = "a b c".split("delimiter");

String s = "lalala".substring(0, 2);
// s = la

19

CSSE2002 Alistair Michael

Regular Expressions

Exist in java (pattern)

Converting Strings

Integer.parseInt()
Float.parseFloat()
Double.parseDouble()
Boolean.parseBoolean() // converts to false for anything other than true

All number types return NumberFormatException if the number format is wrong.

Objects

Usually putting the parsing code in an initialiser is not appropriate, it doesnt separate
IO classes from logic classes, and it requires files to be organised as one class to a file or
other complexity.

It is better to have another IO class that parses the file, then calls the objec initialisers.

File Objects

Creating, renaming, moving etc; filsystem manipulations, not manipulating file objects
(that is through the stream abstraction).

java.nio.File package contains

• java.nio.file.Path
• java.nio.file.Files

Exit

System.exit(1); // exit with an error code
Default exit status is 0, which means success.

JavaFX

Good example of Object Oriented, and event-driven programming.
It has newer features than older GUI libraries, it automatically manages threads, etc.
Need to add a java module through VM options in IntelliJ (to add jvm arguments).
Create a class - Extends javafx.application.Application - Override the start()

method

Stage

A stage is the main window which displays a single Scene which holds all the widgets.
The scene holds a heirachial scene-graph that holds GUI elements.

20

CSSE2002 Alistair Michael

Layout Panes

• groups nodes (GUI Elements)
• can use column, row ordering to place nodes within a grid

– grid.add(new Label("hello"), col,row)

Controls

Buttons, labels, areas, textfields etc

Panes

Boxes that hold groups of nodes and can be laid out as nodes themselves.
BorderPane(): a pane with borders

Canvas

Draw shapes and things in a space.
Look at examples its not very complex.

EventHandlers

Interactions with the gui generate events, and program functions also generate events.
We only consider ActionEvent in javafx.event for handling gui events.
For something to happen as a result of an Event, there needs to be an EventHandler

associated with that event.
EventHandler is an interface which we use to implement our event handlers.
They can be connected to buttons with setOnAction

// package private class, can be in the same file as ButtonDemo
// note that package private classes still generate .class files so
// you have to be careful of name conflicts in the package scope still
class ButtonDoer implements EventHandler<ActionEvent> {

public void handle(ActionEvent e) {
System.out.println("Send to console");

}
}

public class ButtonDemo extends javafx.application.Application {
...
public void start() {

...
Button button = new Button("useless button");
button.setOnAction(new ButtonDoer());
...

}
}

21

CSSE2002 Alistair Michael

Better Design

• link the events and what they do more loosely,

– to avoid putting application logic in event handlers
– use inner classes instead of package private classes for event handlers for better

encapsulation

public class ButtonDemo extends javafx.application.Application {
private Stage stage;

public static void main(String[] args) {
Launch(args);

}

public void start(Stage stage) {
this.stage = stage;
Button button = new Button("useless button");
button.setOnAction(new ButtonDoer());

GridPane grid = new GridPane();
grid.add(button, 0,0);
Scene scene = new Scene(grid);

stage.setScene(scene);
stage.show();

}

public void respondToButton() {
// do stuff

}

// no one else can do actions that aren't tied to events
// logic is encapsulated with the gui interactions
private class ButtonDoer implements EventHandler<ActionEvent> {

public void handle (ActionEvent e) {
repondToButton();

}
}

}

• can use a single handler for many buttons, make buttons private memebers and
switch over event.getSource() == button1.

• nested classes are non-examinable

Anonymous Classes

Allows you to create an event handler immediately to do the things that you want the
button to do.

22

CSSE2002 Alistair Michael

button.setOnAction(new EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {

respondToButton();
}

}// end of class
button2.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent e) {
respondToButton2();

}
}// end of class

);

A similar effect can be achieved with lambdas.

button1.setOnAction((ActionEvent event) -> respondToButton());

TextFields

For entering text

tf = new TextField();
String text = tf.getText();
tf.setText("Hello World")

Dialogs

For confirmation prompts etc, there are pre-designed dialogue types.

public void doButton() {
TextInputDialog inputDialog = new TextInputDialog();
inputDialog.initStyle(StageStyle.DECORATED);
inputDialog.setHeaderText("Hello World");

ImageView iv = new ImageView(new Image("photo.png"));
iv.setFitHeight(40);
iv.setPreserveRatio(true);
inputDialog.setGraphic(iv);

Optional<String> result = inputDialog.showAndWait();
if (result.isPresent()) {

System.out.println(result.get())
}

}

FileChooserDialog

public class FileChooserDemo extends javafx.application.Application {
private Stage stage
private FileChooser fileChooser = new FileChooser();

23

CSSE2002 Alistair Michael

private void respondToButton() {
File file = fileChooser.showOpenDialog(stage);
if (file != null) {

openFile(file);
}

}

private void openFile (File file) {
// do stuff

}
}

Design Quality

The most fundamental design guidelines are

1. Every class and method has a single clearly defined purpose and reason for existing.
2. Classes encapsulate all their own state and actions.

Cohesion

• Does a class/object make sense as a single entity
• Do all the data and methods fit together for a single purpose or abstract concept

– minimises extraneous ideas to understand
– simpler unit to test
– modification is easier

Coupling

• How strongly a class depends on another class

– How much of the internal state is passed to another class through methods?
– How many methods of other classes are called?
– Can another object influence the flow of control in this object?

• Low coupling is preferable

– highly coupled classes are harder to write and test in isolation
– high coupling can indicate that a class has been split when it shouldn’t have

been

Law of Demeter

The target of a message can only be one of the following objects:

• The methods object (this)
• An object passed as a parameter
• An object referred to by an attribute of the object

24

CSSE2002 Alistair Michael

– Weak form of Demeter: and anything in that collection o

• An object created by the method
• Object referred to by a global variable

Avoid chained messages a.getB().getC().doSomething(), since this increases cou-
pling

Mindless Classes

• A class should manage its own flow of control

– restrict other classes from accessing its state
– data members are private
– minimise accessor methods

• The logic that is applied to the classes data should be within the class, not in other
classes that access the data through getters

• These tend to have low cohesion and high coupling

God Classes

• Classes that do everything within their context and contain all the data
• High coupling and low cohesion

Mitigation

A class should only depend on the public interface of another class.

• Attributes should only belong to one class.

– This is often violated when classes have many accessors

• A class should represent a single abstract concept

– Unrelated data and functionality should be factored out to other classes

• system logic should arise from the classes working to gether to implement behaviour,
it should be shared between classes uniformly

Fragile Super Class

• Inheritance creates strong coupling between the superclass and the subclass
• Does the design rely on the knowledge of the private methods of the superclas;

changing the privates in the superclass should not change behaviour or cause prob-
lems for the subclasses.

• Public or protected methods should only change behaviour if the specification of
their functionality changes

– should usually be overridden in the subclasses

Downcall

• Calling a method from a childs class

25

CSSE2002 Alistair Michael

Further Reading

• Abstraction and Encapsulation
• SOLID OO
• Papers by Bob Martin

GUI Design

• Model

– Conceptual things: entities, in the system
– State
– invariants
– methods that enforce the invariants

• View

– A presentation of the state, and a way to interact with it

Why MVC?

• Decompose the task
• Separate interface from model

– Can change the UI independently of the model
– Might want to support multiple interfaces
– GUIs, web, mobile screenreaders

• Responsibility for enforcing invariants should be in only one place

How MVC: Challenges

View and Model need to communicate - find current state - may need to notify the
interface for when state changes

• The user has to get information and send commands
• The interface needs to know if the model has changed

We want them to be loosely coupled, so the model shouldn’t know about the view.

• one way access from interface to model is satisfactory only for a small model and
interface. It is generally not safe to assume that the model is synchronous with the
view.

• Dont want to make the user wait for the model to sort itself out

• Multiple interfaces being connected could easily make a deadlock

• Model generally is updated independently to the actions happening in the inter-
face, from things like external input, network input, or just calculating results of
requested functions

26

https://www.freecodecamp.org/news/object-oriented-programming-concepts-21bb035f7260/
https://alanbarber.com/post/solid-principles-five-principles-of-objectoriented-programming-and-design/
https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/

CSSE2002 Alistair Michael

Callbacks and Observers

• User Interfaces implement an interface that the model knows about, and which
it uses to tell the interface that the model has changed, and details about what has
changed

– The interface can then ask the model for further information only when there
is new information available, without having to poll constantly to ask

– So UI updates are driven by events sent by the model

Input Processing

1. Getting Values from UI components to assemble a method call

• maybe the processing to generate the call to the model, needs to be in a
separate class if it is very complex

2. Making changes to the model based on that call

• belongs in the model

Model View Controller

• View:

– sends messages to the controller based on User interaction
– recieves callbacks from the model and queries details about state

• Controller:

– recieves requests from the view and figures out what to do to the model in
response

• Model:

– Stores state, does program logic, and implements functionality
– Tells the view when it has changed

Model View Adapter

Isolate the view from the model using an adapter

• View

– interacts with user
– sends events to an adapter
– recieves updates from adapter

• Adapter

– reads state from model
– manipulates model
– recieves callbacks from model about state
– sends updates to the view

• Model:

27

CSSE2002 Alistair Michael

– Stores state, does program logic, and implements functionality
– Tells the adapter when it has changed

An example of an Adapter might be a REST API to a server-side functionality

Model View Presenter

Same as MVA except the view and presenter is more tightly coupled. Every view class
has its own presenter class.

Presenter manages the display, not just bridging between view requests and the model,
so it can do more complex things with the view to allow it to be more responsive and
intelligent, without having a lot of that complexity in the actual UI code.

Model View ViewModel

ViewModel:

• encapsulates the state (of the model) that is displayed by the view
• tight coupling with the view: two way binding
• user changing state immediately updates viewmodel,
• Is provided by libraries

– less boilerplate code required for implementing event-sending between the view
and controller and model

• the most restricted version here

– Cannot easily have different views

Generic Programming

• Using Object is bad because it has no type safety.
• Generic types solve this, since you can use parameterised types.

– still has compile-time type checking
– don’t need to cast in and out

public class X<T> Boo {
private T myFirstVariable;
// T is the type of myFirstVariable
// ... constructor goes here ...
...

}

You can now instantiate the class and give it a specific type.

Boo<Integer> = new Boo<>();

You can an arbitrary number of type parameters in clases.
There is a naming convention.

28

CSSE2002 Alistair Michael

• E: Element (in collections)
• K: Key
• N: number
• T: Type
• V: Value
• S,U,V. . . Additional types

Generic Methods

Do not have to be in a generic class

public static <T> int count(T[] array, T value) {
for (T item : array) {

;

}
}

Bounded Type Parameters

• Types can be restricted to being a subset of classes.

public class<T extends Number> {...}

This allows anything that is a sub-class of Number.

Generic Inheritance

class X <T> extends class Y <T> {}
class X <T> extends class Y <String> {}

• note that using a subclass as a generic parameter, does not imply that the classes
themselves have an inheritance relationship.

Wildcards

? Represents an unknown type, but not a specific unknown type. They are useful when
generic types are needed but they do not need to be named and referenced.

? - any type ? extends Type - any subclass of Type ? super Type - any superclass
of Type

Implementation

Type Erasure:
Generics are handled at compile time by replacing the generic types with Object,

replacing bounded generics with the bounding Type and adding casts and bridging meth-
ods.

Java only knows that types are at runtime, not at compile time.

29

CSSE2002 Alistair Michael

Restrictions on Generics

• Cannot be primitives
• Cannot instantiate generics: new T()
• Cannot be static
• Cannot have arrays of generic types
• No generic exceptions
• There are restrictions on overloading

Object Oriented Design

Textual Analysis

Considering the description of the system
Identify elements to be modelled. - nouns -> data, categories -> attributes, classes -

verbs -> processes -> methods
Be mindful of relevance, relatedness, and relationships between the nouns in the

model.

Common Class Patterns

Find candidate classes using classification theory:

• Concepts
• Events
• Organisation
• People
• Place

are all class-candidates.

Class-Responsibilities-Collaborators

After identifying candidate-classes, consider the behaviour and interactions between
classes.

Using humans, roleplay to model how the classes should deliver the system behavoir.
For pinning down the responsibilities of a class, and defining the collaborators that

facilitate their interaction.
This helps develop a shared understanding of the system design.
Reading

OOPSLA89 Paper Summary

Responsibilities are problems to be solved. The responsibilities of an object are active
verb phrases.

All objects exist in relationships to other objects. Collaborators are objects that send
messages, or are sent messages, in order to satisfy their responsibilities.

Make cards like this
The first line is the class name, followed by a list of responsibilties.

30

https://c2.com/doc/oopsla89/paper.html

CSSE2002 Alistair Michael

Figure 0.1: 3 index cards showing a model, view and controller. The top of the card is
the Class name and below it a list of responsibilities

Design the model by role playing the execution of the model from some starting point
in the model:

start with only one or two obvious cards and start playing “what-if”. If the
situation calls for a responsibility not already covered by one of the objects
we either add the responsibility to one of the objects, or create a new object
to address that responsibility

Only create objects to address the immediate need, not a hypothetical future need.
If they are needed in the future, then they will be created in the future.

Functional Abstractions in Java

Lambdas

• Anonymous methods
• Do not have a name
• Do not belong to a class, analagous to a c function
• Do not have return type

(MathOperation is an interface defining one method.)

31

CSSE2002 Alistair Michael

MathOperation addition = (int a, int b) -> a + b;
MathOperation subtraction = (a, b) -> {return a - b};

It is also a more clear expression for attaching event handlers.

button.setOnAction((ActionEvent event) -> respondToButton());

Functional Interfaces

The idea is they work like a single function, outside of a class. This allows passing
functions and logic to methods as an attribute.

• They contain one (1) interface with a single abstract method and potentially de-
fault methods, static methods or overridden methods inherited, to support the core
function.

• need the @FunctionalInterface label.

@FunctionalInterface
interface MathOperation {

int operation(int a, int b);
}

For Each loop

For each loops can be simplified to use an iterator to apply a passed lambda function to
each element of a collection.

list.forEach(thing -> System.out.println(thing))
list.forEach(thing -> thing.toUpperCase())

Be careful, strings are immutable so the second line does not actually modify the
string in the list, it only returns a reference to a new string.

Method References

A reference to a member of a FunctionalInterface, static method, instance method,
constructor, an arbitrary instance method, by using the syntax ClassName::methodName
to refer to a specific method.

@FunctionalInterface
interface Doable {

void do();
}

class MethodReference {

public void method(String message) {
System.out.println(message);

}

32

CSSE2002 Alistair Michael

public static void staticMethod(String message) {
System.out.println(message);

}

public static void main(String[] argv) {
Doable memberExample = MethodReference::method;
Doable staticMemberExample = MethodReference::staticMethod;
memberExample.do("hello"); // prints "hello\n"
staticMemberExample.do("world"); // prints "world\n"

}
}

Another example:

list.forEach(System.out::println);

It is possible to reference the constructor with Classname::new.

Standard Functional Interfaces

Consumer<T> :: void accept(T t)

Function<T, R> :: R apply(T t)

Predicate<T> :: boolean test(T t)

Supplier<T> :: T get()

UnaryOperator<T> T apply(T t)

See javadoc on java.util.function.

Streams

(monads)
A stream of data (different to IO streams), that aggregate functions can work on in

a chain from source to an output.

• doesn’t hold data
• doesn’t modify the data source

Aggregate Operations

• functions that use the stream contents

Pipelining

• Operations can be daisy-chained together

33

CSSE2002 Alistair Michael

Automatic Iteration

• Iteration is performed in the stream, over the data source
• Can process data that doesn’t fit in memory
• Enables lazy invocation (compiler only calling a function when neccessary)

See java.util.streams

Intermediate Streams

• Processes elements in a stream
• Returns another stream so they can be pipelined
• map, filter, sorted are examples

Terminal Streams

The end of a stream that returns a result.
For example, forEach, collect, reduce

List<Student> students = new ArrayList<>(); // and add students to a list

// print failing students
students.stream()

.filter(student -> student.getGpa() < 4.0)

.forEach(System.out::println)

Recursion and Sort Algorithms

The basic case of recursion is a function calls itself, reducing the size of the problem at
each subsequent call, to progress towards a base case.

function {
if (base case) {

return;
}
else (reduction cases) {

return function();
}

}

This has the risk of stack overflows, because each call adds to the callstack.
Recursion is more elegant for some types of problems, which are naturally expressed

in recurrent logic.
Recursion is ‘easier’
To read, write, and for who. More understandable code that is harder to write is

often valueable.

Java Sorting

Java by default uses Timsort algorithm. List.sort.

34

CSSE2002 Alistair Michael

Merge Sort

Sorts bottom-up, by recursively halving an array and sorting the halves until the base
case of 1 element is reached, and then merging the sub-arrays together by repeatedly
choosing the smallest and adding it to the result array.

Quick Sort

First find a partition, the position of one element that is already in the correct position
for the sorted result, such that everything to the left of it is < and everything to the
right is > it.

Then, repeatedly, a value in the left partition that is greater than the middle value is
found, and a value to the right partition that is greater than the central value is found,
and they are swapped, until everything to the right is greater than the middle value, and
everything to the left is less than the central value.

This process is then recursively applied to the left and right sub-arrays.

• The partition scheme is central to the performance, the array needs to be divided
evenly while maintaining the requirements.

https://en.wikipedia.org/wiki/Quicksort#Algorithm

Which is Better?

• merge is easier to understand

• merge has better worst-case performance

• quicksort has better average performance

• quicksort has lower average memory requirements

• quicksort requires the data to fit in memory

Visualisation Sites:

• visualgo.net
• usfca
• sorting.at

35

https://visualgo.net/bn/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://sorting.at

	Contents
	Language
	Variables
	References
	Mutability

	Classes
	Overloading
	Interfaces
	Casting

	Exceptions

	Java Collections
	Stack
	Generic Types

	Lists
	Different Implementatiosn
	Methods

	Iterators
	Kinds

	Lists
	Sets
	TreeSet
	HashSet

	Map

	Automated Testing
	Terms
	Procedures
	Test Driven Design
	Junit4 Framework
	Assert
	Setup
	What to test
	Things to test
	Code Coverage
	Procedural Abstraction
	Specifications

	Contract-driven design
	Defensive Programming
	Substitution Principle

	Miscellaneous Java
	Instanceof
	Questionable Uses

	Newlines
	Pre / post increment
	Ternary
	Final keyword
	Variables
	References
	Methods
	Classes

	Abstract
	Short Circuit evaluation

	StringBuilder / StringBuffer
	Copying (clone)
	Properties of .equals()
	Hash Codes

	Input-Output
	Scanners
	Encoding
	Streams
	java.io.InputStream
	Buffered input
	Readers
	Try with Resources
	Parsers

	Output
	PrintWriter

	Serialisation
	Limitations

	Parsing Text Files
	Split Strings
	Regular Expressions
	Converting Strings
	Objects
	File Objects
	Exit

	JavaFX
	Stage
	Layout Panes
	Controls
	Panes
	Canvas
	EventHandlers
	Better Design
	Anonymous Classes

	TextFields
	Dialogs
	FileChooserDialog

	Design Quality
	Cohesion
	Coupling
	Law of Demeter

	Mindless Classes
	God Classes
	Mitigation
	Fragile Super Class
	Downcall

	Further Reading

	GUI Design
	Why MVC?
	How MVC: Challenges
	Callbacks and Observers
	Input Processing
	Model View Controller
	Model View Adapter
	Model View Presenter
	Model View ViewModel

	Generic Programming
	Generic Methods
	Bounded Type Parameters
	Generic Inheritance
	Wildcards
	Implementation
	Restrictions on Generics

	Object Oriented Design
	Textual Analysis
	Common Class Patterns
	Class-Responsibilities-Collaborators
	OOPSLA89 Paper Summary

	Functional Abstractions in Java
	Lambdas
	Functional Interfaces
	For Each loop
	Method References
	Standard Functional Interfaces

	Streams
	Intermediate Streams
	Terminal Streams

	Recursion and Sort Algorithms
	Java Sorting
	Merge Sort
	Quick Sort

	Which is Better?

